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The rapid evolution of the wheat powdery mildew fungal pathogen Blumeria graminis f.sp.
tritici (Bgt hereafter), is forcing scientists to continuously search and enrich wheat reservoirs
with novel disease resistance genes (R-genes). Wild emmer wheat (Triticum turgidum ssp.
dicoccoides; WEW hereafter, Fig. 1), the tetraploid progenitor of cultivated wheat (Nevo et al.
2002), is a valuable source for Bgt resistance genes. Previously, we identified two novel
dominant powdery mildew resistance genes PmG16 and PmG3M, derived from wild emmer
wheat accessions G18-16 and G305-3M, that were genetically mapped on chromosome arm
7AL and 6BL (Xie et al. 2012; Ben-David et al. 2010), and officially named TdPm60 (Li et al.,
2021) and Pm69, respectively (Fig. 2). The objective of the current study was to clone the two
powdery mildew resistance genes TdPm60 and Pm69 from wild emmer wheat and deploy
them into wheat breeding programs to improve disease resistance in the bread wheat.
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Figure 1. The morphology of wild emmer Figure 2. WEW accessions G18-16 and G305-3M were high
wheat in its natural habitat, upper Galilee, resistance to powdery mildew with ROS (reddish-brown
Israel, with immature (A) and mature (B) coloration) and cell death (blue coloration) response. MP,
disarticulating spikes. mature haustorium; HP, haustorial primordia. Bars = 20 um.

1) TdPm60 confers high resistance to powdery mildew. We mapped PmG16 to a 1.4-cM
interval on Chromosome 7AL, which resides in the same syntenic region of TuPmé60,
previously cloned from Triticum urartu (Zou et al., 2018). The functional molecular marker
(FMM) for TuPm60 co-segregated with PmG16 and was also associated with resistance to
Bgt #15 in WEW natural population (Fig. 3A). We used the homologous cloning strategy for
cloning the full length (4365 bp) of the corresponding Pm60 locus (designated as TdPm60)
from G18-16. Sequence alignment identified only eight SNPs that differentiated
between TdPm60 and TuPm60 (Fig. 3B). The function of TdPm60 was validated by the virus-
induced gene silencing (VIGS) approach in WEW accessions G18-16 and TD116494 (Fig. 3C).
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Figure 3. TdPm60 confers resistance to powdery mildew. A: PCR amplification using FMMs M-Pm60-
S1 and M-Pm60-S3 in the respective WEW accessions. R (resistant), S (Susceptible) and PR (Partial resistance)
to Bgt #15. B: TdPm60 conserved domains and differences from TuPm60 in nucleotides and amino acid
sequences: TdPm60 (red font) and TuPmé60 (black font). C: VIGS of TdPm60 in WEW accessions G18-16 and
TD116494, which contain the TdPm60 functional allele.

2) TdPm60 is a major powdery mildew resistance gene in the WEW natural populations.
TdPm60 also constitutes a strong candidate for MIIW72, MIIW172 and MIWE18 based on
their genetic location (Fig. 4A) and FMMs analysis. TdPm60 alleles were identified in
approximately 25.2% (58 out of 230) wild emmer wheat accessions (Fig. 4B). Only one
accession contained the TdPm60a allele, with a 240-bp deletion in the LRR domain compared

with TdPm60. All of these 59 WEW accessions containing TdPm60 alleles were highly resistant
to Bgt #15.

B

A 40- Bursa s> A"’éafa : b f‘d‘fﬂ' ‘ Armenia” - .Azerbaijan ©E
733339776 ~. o~ Uhw386 by Ao
» MIIW72 (Mag1759-Mag2185) i A W=
735356928 WGGC4665 = RN 3505na
735361728 Xmag5825.1 .  ad J A s
736593152 TRIDC7AGO77150.1 » TdPme60 location ‘
736596672 ~\_y- Mag2185 > HSM1 (Xmag5825.1-Xgwm344) - . v
736815424 == uhw390 (Xmag g ) Cyprus "' Syria e
736871040 Xgwm344 > MIIW172 (WGGC4665-Xgwm344) = - ®/8 Dama el | @
Beirut 5 &
[ ‘ 90 Nahariyya 8 “b‘
. . Acre = _.t
Aqlﬁx!asndr;”a Jerusalen. Jordan " & 2P
L, MIWE18 (Mag1759-Xcfa2240) ° cairo Israel T s &7
30- o)s@LnJl 1 - ; '
X ,.0
{1’7 ‘ " Y
Egypt Nabids > j —'/f‘/, 'va". .
25- Tel Aviv-Yafo 2 5 . "A, % A =8 “ Zarc
LeTsly “' P 7, Amman
e 2y’ Jerusalem
' Map data ©2020 GeoB: ,€eegh : /! .
746943616 Xcfa2240 ’ lon ’

category @ Functional Pmé0 @ Functional Pm60a A Nonfunctional Pm60 @ Resistant Susceptible

Figure 4. TdPm60 was a major allele in WEW natural populations. A: Anchoring of the flanking markers
of MIIW72, MIIW172, PmG16 and SHM1 to the reference genome WEW Zavitan_v.2.0 (Zhu et al. 2019). B:
The geographic distribution of the TdPm60 (blue) and TdPm60a (purple) based on FMM analysis.

3) Cloning of Pm69 in the whole-genome sequence of G305-3M by using long-read sequencing
technology. For cloning of Pm69, map-based cloning approach encountered by genome
structural variations that suppressed recombination (Fig. 5A-B), and the isolation of targeted
6B chromosome of G305-3M failed for sequencing. Finally, Pm69 was cloned in the whole-
genome sequence of G305-3M by Oxford Nanopore sequencing Technology (ONT), combined
with transcriptome sequencing of susceptible mutants (MutRNAseq) (Fig. 5C).
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Figure 5. Cloning of Pm69 from WEW G305-3M. A: fine mapping of Pm69. B: Comparison of the G305-3M
contigs with the 6B pseudomolecule of WEW_v2.0 and durum wheat Svevo RefSeq Rel. 1.0 around the Pm69
genetic region. C: The workflow of identification of Pm69 from the ONT contigs by MutRNAseq.

4) Pm69 is a very rare allele, located within a rapidly evolving NLR cluster. We screened 310
WEW accessions, as well as 228 accessions of other wheat relatives, with Pm69 marker uhw403.
Only G305-3M vyielded positive PCR amplification. We went back to the original G305-3M
collection site south of Kadita, Northern Israel, and collected additional 64 WEW accessions in a
radius of less than 1km from the original collection site (Fig. 6). Only three accessions yielded
the same PCR products as G305-3M by marker uhw403, suggesting that the Pm69 is a very rare
allele. The WEW G305-3M and Zavitan genome assemblies contained more than 40 NLRs around
the Pm69 locus, indicating the presence of an NLR cluster (Fig. 7). The Pm69 NLR cluster showed
high polymorphism among different wheat genome assemblies, while the OPR11 gene inside
the cluster and the further flanking regions of the cluster were more conserved, suggesting that
oppositive evolutionary selection pressures operated within this genetic interval (Fig. 7).
Therefore, it seems that Pmé69 is located within a rapidly evolving NLR cluster.
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5) Introgression of the TdPm60 and Pm69 into the cultivated wheat and pyramiding with several
vellow rust resistance genes. As part of the aim to develop resistant pre-breeding genetic
resources, we transferred TdPm60 and Pm69 into serval elite Israeli bread wheat varieties
(‘Ruta’, ‘BarNir’ or ‘Zahir’) following the “durum as a bridge” approach (Klymiuk et al. 2019),
based on marker-assisted selection. We also pyramided Pm69 with three yellow rust resistance
genes (Yr5, Yr15 and Yr24). These selected lines showed high resistance to Bgt and Pst,
demonstrating the high potential of these genes for future wheat resistance breeding (Fig. 8).
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Figure 8. Introgression of the Pm genes into the cultivated wheat and pyramided with yellow rust resistance genes.
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